PEMODELAN ARTIFICIAL NEURAL NETWORK PERAMALAN TINGKAT KENAIKAN JABATAN BERDASARKAN KINERJA PEGAWAI MENGGUNAKAN BACKPROPAGATION
(1) Universitas Potensi Utama
(2) Universitas Potensi Utama
(*) Corresponding Author
Abstract
At PT JNE Pematangsiantar, this large capacity for delivery and service of goods and services clearly requires good human resources. Information about organizational performance is a very important thing used to evaluate whether the performance process carried out by the organization so far has been in line with the expected goals or not. In this study, a prediction system for the level of promotion based on performance will be designed by taking into account the factors of the work of the employee and the results of the assessment will be used to calculate the eligibility of an employee, intended to provide employee incentives or to retain the employee. An artificial neural network is an information processing system that is designed to imitate the workings of the human brain in solving a problem by carrying out the learning process through changes in the weight of its synapses. In this study, the author uses the Backpropagation algorithm. Backpropagation gradient descent algorithm to minimize the square of the output error. There are three stages that must be carried out in network training, namely the forward propagation stage, the reverse propagation stage, and the weight and bias change stage. The results of this study indicate that the best architectural model (5-2-1) with MSE 0.004865154, epoch 126 with an accuracy rate of 70%. With the best prediction in predicting the promotion of employee positions at JNE.
Full Text:
PDFReferences
B. H. Hayadi, I. G. I. Sudipa, and A. P. Windarto, “Model Peramalan Artificial Neural Network pada Peserta KB Aktif Jalur Pemerintahan Menggunakan Artificial Neural Network Back-Propagation,” Matrik J. Manajemen, Tek. Inform. Dan Rekayasa Komput., Vol. 21, No. 1, Pp. 11–20, 2021, Doi: 10.30812/Matrik.V21i1.1273.
W. Budiharto And D. Suhartono, Artificial Intelligence Konsep Dan Penerapannya, Andi Yogya. Yogyakarta, 2014.
B. Herawan Hayadi, K. Rukun, R. Ema Wulansari, T. Herawan, And D. Setaiwan, “Expert System Of Quail Disease Diagnosis Using Forward Chaining Method Chicken Growt H Rat E Monit Oring Syst Em Using Fuzzy Rule-Based Amirul Iqba Decision Making In T He Tea Leaves Diseases Det Ect Ion Using Mamdani Fuzzy Inference Met Hod Expert System,” Indones. J. Electr. Eng. Comput. Sci., Vol. 5, No. 1, Pp. 207–214, 2017, Doi: 10.11591/Ijeecs.V5.I1.Pp.
Y. Nuraeni, “Penerapan Jaringan Syaraf Tiruan Untuk Mengukur Tingkat Korelasi Antara Nem Dengan Ipk Kelulusan Mahasiswa,” Telkomnika (Telecommunication Comput. Electron. Control., Vol. 7, No. 3, P. 195, 2009, Doi: 10.12928/Telkomnika.V7i3.594.
B. H. Hayadi, “Sistem Pakar.” Deepublish, 2018.
T. Dalgleish Et Al., Jaringan Syaraf Tiruan (Neural Network), Vol. 136, No. 1. 2014.
A. Wanto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., Vol. 2, No. 2, Pp. 37–44, 2017.
B. Herawan Hayadi, A. Bastian, K. Rukun, N. Jalinus, Y. Lizar, And A. Guci, “Expert System In The Application Of Learning Models With Forward Chaining Method,” Int. J. Eng. Technol., Vol. 7, No. 2.29 Special Issue 29, Pp. 845–848, 2018, Doi: 10.14419/Ijet.V7i2.29.14269.
A. P. Windarto, J. Naam, Y. Yuhandri, A. Wanto, And M. Mesran, “Bagian 2: Model Arsitektur Neural Network Dengan Kombinasi K-Medoids Dan Backpropagation Pada Kasus Pandemi Covid-19 Di Indonesia,” J. Media Inform. Budidarma, Vol. 4, No. 4, Pp. 1175–1180, 2020, Doi: 10.30865/Mib.V4i4.2505.
T. Riyanto, “Akuntabilitas Finansial Dalam Pengelolaan Alokasi Dana Desa (Add) Di Kantor Desa Perangkat Selatan Kecamatan Marangkayu Kabupaten Kutai Kartenegara,” Ejournal Adm. Negera, Vol. 3, No. 1, Pp. 119–130, 2015.
Agus Perdana Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-Sakti (Jurnal Sains Komput. Dan Inform., Vol. 1, No. 1, Pp. 12–23, 2017.
A. P. Windarto, L. S. Dewi, And D. Hartama, “Implementation Of Artificial Intelligence In Predicting The Value Of Indonesian Oil And Gas Exports With Bp Algorithm,” Int. J. Recent Trends Eng. Res., Vol. 3, No. 10, Pp. 1–12, 2017, Doi: 10.23883/Ijrter.2017.3482.J5bbs.
Z. A. Matodang, “Jaringan Syaraf Tiruan Dengan Algoritma Backpropagtion Untuk Penentuan Kelulusan Sidang Skripsi,” Pelita Inform. Budi Darma, Vol. 4, No. 1, Pp. 84–93, 2013.
Y. A. Lesnussa, S. Latuconsina, And E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Prestasi Siswa Sma ( Studi Kasus : Prediksi Prestasi Siswa Sman 4 Ambon ),” J. Mat. Integr., Vol. 11, No. 2, Pp. 149–160, 2015.
N. M. Sukarno, P. W. Wirawan, And S. Adhy, “Perancangan Dan Implementasi Jaringan Saraf Tiruan,” Vol. 5, Pp. 9–18, 2013.
L. Handayani And M. Adri, “Penerapan Jst ( Backpropagation ) Untuk Prediksi Curah Hujan ( Studi Kasus : Kota Pekanbaru ),” No. November, Pp. 238–247, 2015.
M. R. Munandar, E. S. Astuti, And M. S. Hakam, “Pengaruh Keelamatan, Kesehatan Kerja (K3) Dann Insentif Terhadap Motivasi Dan Kinerja Karyawan (Studi Pada Pekerja Bagian Produksi Pt. Sekawan Karyatama Mandiri Sidoarjo),” J. Adm. Bisnis, Vol. 9, No. 1, Pp. 1–9, 2014.
A. Wanto Et Al., “Forecasting The Export And Import Volume Of Crude Oil, Oil Products And Gas Using Ann,” J. Phys. Conf. Ser., Vol. 1255, No. 1, 2019, Doi: 10.1088/1742-6596/1255/1/012016.
Refbacks
- There are currently no refbacks.
Published Papers Indexed/Abstracted By: