Penerapan Algoritma K-Medoids Clustering Dalam Pengelompokkan Data Hutan Tanaman Industri Di Sumut

Muhammad Reynaldy Pangestu(1*), Eka Irawan(2), Ilham Syahputra Saragih(3),

(1) Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(2) Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(3) Program Studi Sistem Informasi, STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
(*) Corresponding Author

Abstract


One of the important points in utilizing industrial planted forests is meeting the need for industrial raw materials in the form of timber forest products and increasing productivity as a production forest. The demands of meeting the demand for raw materials for forest products for industrial use cannot be used just by any party. This is because a business permit for the utilization of timber forest products in Industrial Plantation Forests is required for HTI development that has been degraded or has decreased productivity, especially since the establishment of concessions and expansion of HTIs that are not in accordance with procedures. The government is of course increasingly demanding to be active in managing the requirements for the formation, exploitation, and expansion of HTI including the flow, procedure, and timing. So the authors conducted this study aimed at analyzing Industrial Planted Forests in the context of grouping the number of HTI expansions that had been realized from the previous plan. For this reason, it is necessary to apply the K-Medoids method. The K-Medoids method is able to measure the level grouping of industrial plantation forest expansion. The variable used is the area of industrial forest that has been realized for 3 years. So the results obtained are the number of regional industrial planting forests in North Sumatra which are the most productive in terms of expansion.

Full Text:

PDF

References


Defiyanti, S., Jajuli, M., & W, N. rohmawati. (2017). Optimalisasi K - Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan Cubic Clustering Criterion. TEKNOSI, 03(01), 211–218.

Pramesti, D. F., Furqon, M. T., & Dewi, C. (2017). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(9), 723–732.

Pulungan, N., Suhada, S., & Suhendro, D. (2019). Penerapan Algoritma K-Medoids Untuk Mengelompokkan Penduduk 15 Tahun Keatas Menurut Lapangan Pekerjaan Utama. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 329–334. https://doi.org/10.30865/komik.v3i1.1609

Riyanto, B. (2019). Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 562–568. https://doi.org/10.30865/komik.v3i1.1659

Ropianto, M. (2016). Pemahaman Penggunaan Unified Modelling Language. Jt-Ibsi, 1(1), 43–50.

Silitonga, D. A., Windarto, A. P., & Hartama, D. (2019). Penerapan Metode K-Medoid pada Pengelompokan Rumah Tangga Dalam Perlakuan Memilah Sampah Menurut Provinsi. Seminar Nasional Sains & Teknologi Informasi (SENSASI) SENSASI 2019 ISBN:, 313–318.

Sindi, S., Ratnasari, W., Ningse, O., Sihombing, I. A., Zer, F. I. R. H., Hartama, D., & Kunci, K. (2020). Analisis algoritma k-medoids clustering dalam pengelompokan penyebaran covid-19 di indonesia. 4(1), 166–173.

Urva, G., & Siregar, H. F. (2015). Pemodelan UML E-Marketing Minyak Goreng. JTSI, 1(9), 92–101.

Wira, B., Budianto, A. E., & Wiguna, A. S. (2019). Implementasi Metode K-Medoids Clustering untuk Mengetahui Pola Pemilihan Program Studi. Jurnal Terapan Sains & Teknologi, 1(3), 54–69.

Yusuf, M., Danuri, D., & Jaroji, J. (2019). Aplikasi Penjualan Tiket Ro-Ro Bengkalis Berbasis Android. INOVTEK Polbeng - Seri Informatika, 4(2), 201.


Refbacks

  • There are currently no refbacks.



 

SmartAI: Buletin artificial intelligence
Online ISSN: 2828-1144
Organized by Yayasan Adwitiya Basurata Inovasi
Published by Yayasan Adwitiya Basurata Inovasi
W: https://ejournal.abivasi.id/index.php/SmartAI

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0


Published Papers Indexed/Abstracted By: