PENGOLAHAN CITRA UNTUK KLASIFIKASI KUALITAS GARAM KROSOK MENGGUNAKAN METODE KNN

Siti Makhfuudlotur Rohmah(1*), Aditya Akbar Riadi(2), E Evanita(3),

(1) Universitas Muria Kudus
(2) Universitas Muria Kudus
(3) Universitas Muria Kudus
(*) Corresponding Author

Abstract


Krosok salt is the original salt produced by Indonesian farmers since ancient times, especially in the Rembang district. This krosok salt is coarse salt that does not contain iodine. For the selection of the quality of krosok salt, we can see in terms of color that is in krosok salt. Some are premium quality and some are non-premium quality. So far, the selection of krosok salt quality has been done manually. Which is considered less than the maximum result. so that there are often errors or mistakes in choosing the quality of krosok salt. To overcome this problem, the authors create a system that can classify the quality of krosok salt. This research done by taking pictures of krosok salt and then image is processed by the image. krosok salt which is of Premium quality means it is white in color. Meanwhile, krosok salt which is of non-premium quality means it is slightly brownish in color. The result of image processing is in the form of quality classification of krosok salt with the KNN method. then the author uses the android programming language. With this, it is hoped that it will make it easier for farmers and consumers in selecting the quality of krosok salt and minimizing errors and obtaining accurate results.

Full Text:

PDF

References


S. Efendi, A. Iswahyudi, and M. Walid, “Klasifikasi Garam Di Madura Menggunakan Metode Learnig Vector Quantization ( Lvq ),” vol. 2016, no. Sehati, pp. 16–17, 2016.

M. A. Soeleman, Deteksi Objek Bergerak pada Video dan Penerapan Metode Gaussian Mixture Model. 2019.

K. Sumada, R. Dewati, and Suprihatin, “Garam Industri Berbahan Baku Garam Krosok dengan Metode Pencucian dan Evaporasi,” Jurnal Teknik Kimia, 2016.

L. Farokhah, “Implementasi K-Nearest Neighbor untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna RGB,” Jurnal Teknologi Informasi dan Ilmu Komputer, 2020, doi: 10.25126/jtiik.2020722608.

A. R. Pratama, M. Mustajib, and A. Nugroho, “Deteksi Citra Uang Kertas dengan Fitur RGB Menggunakan K-Nearest Neighbor,” Jurnal Eksplora Informatika, 2020, doi: 10.30864/eksplora.v9i2.336.

A. Abdullah, U. Usman, and M. Efendi, “Sistem Klasifikasi Kualitas Kopra Berdasarkan Warna dan Tekstur Menggunakan Metode Nearest Mean Classifier (NMC),” Jurnal Teknologi Informasi dan Ilmu Komputer, 2017.

S. F. Kusuma, R. E. Pawening, and R. Dijaya, “Otomatisasi klasifikasi kematangan buah mengkudu berdasarkan warna dan tekstur,” Register: Jurnal Ilmiah Teknologi Sistem Informasi, 2017, doi: 10.26594/register.v3i1.576.

A. Indriani, “Analisa Perbandingan Metode Naïve Bayes Classifier Dan K-Nearest Neighbor Terhadap Klasifikasi Data,” Sebatik, vol. 24, no. 1, pp. 1–7, 2020, doi: 10.46984/sebatik.v24i1.909


Refbacks

  • There are currently no refbacks.



 

SmartAI: Buletin artificial intelligence
Online ISSN: 2828-1144
Organized by Yayasan Adwitiya Basurata Inovasi
Published by Yayasan Adwitiya Basurata Inovasi
W: https://ejournal.abivasi.id/index.php/SmartAI

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0


Published Papers Indexed/Abstracted By: